Ordinary differential equations and linear algebra - a systems approach
نویسنده
چکیده
Will reading habit influence your life? Many say yes. Reading ordinary differential equations and linear algebra a systems approach is a good habit; you can develop this habit to be such interesting way. Yeah, reading habit will not only make you have any favourite activity. It will be one of guidance of your life. When reading has become a habit, you will not make it as disturbing activities or as boring activity. You can gain many benefits and importances of reading.
منابع مشابه
Reduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملPolynomial Solutions and Annihilators of Ordinary Integro-Differential Operators ?
In this paper, we study algorithmic aspects of linear ordinary integro-differential operators with polynomial coefficients. Even though this algebra is not noetherian and has zero divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic systems theory. For an algorithmic approach to linear systems theory of integro-differential equations with boundary condi...
متن کاملLow Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebr...
متن کامل